Exact Finite Difference Schemes for Solving Helmholtz Equation at Any Wavenumber
نویسندگان
چکیده
Abstract. In this study, we consider new finite difference schemes for solving the Helmholtz equation. Novel difference schemes which do not introduce truncation error are presented, consequently the exact solution for the Helmholtz equation can be computed numerically. The most important features of the new schemes are that while the resulting linear system has the same simple structure as those derived from the standard central difference method, the technique is capable of solving Helmholtz equation at any wavenumber without using a fine mesh. The proof of the uniqueness for the discretized Helmholtz equation is reported. The power of this technique is illustrated by comparing numerical solutions for solving oneand two-dimensional Helmholtz equations using the standard second-order central finite difference and the novel finite difference schemes.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملHigh Order Compact Finite Difference Schemes for the Helmholtz Equation with Discontinuous Coefficients
In this paper, thirdand fourth-order compact finite difference schemes are proposed for solving Helmholtz equations with discontinuous media along straight interfaces in two space dimensions. To keep the compactness of the finite difference schemes and get global high order schemes, even at the interface where the wave number is discontinuous, the idea of the immersed interface method is employ...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملThe Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes
The method of difference potentials was originally proposed by Ryaben’kii and can be interpreted as a generalized discrete version of the method of Calderon’s operators in the theory of partial differential equations. It has a number of important advantages; it easily handles curvilinear boundaries, variable coefficients, and non-standard boundary conditions while keeping the complexity at the ...
متن کاملAn optimal 25-point finite difference scheme for the Helmholtz equation with PML
In this paper, we analyze the defect of the rotated 9-point finite difference scheme, and present an optimal 9-point finite difference scheme for the Helmholtz equation with perfectly matched layer (PML) in two dimensional domain. For this method, we give an error analysis for the numerical wavenumber’s approximation of the exact wavenumber. Moreover, based on minimizing the numerical dispersio...
متن کامل